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This systematic review investigates the applications of machine learning (ML) in inventory control, analyzing
122 articles to provide a comprehensive overview of the state of the art and identify future research directions.
The study proposes a typology to classify the integration of ML into the inventory optimization framework,
distinguishing three primary approaches: (1) separate estimation and optimization, where ML is applied to
demand forecasting before optimization, (2) static ML-integrated optimization, where ML is directly embedded
into optimization models, and (3) dynamic ML-integrated optimization, where reinforcement learning (RL)
is employed to derive optimal inventory policies. The findings highlight that while RL applications are
gaining prominence, significant research gaps remain, particularly in scaling algorithms to real-world problems,
handling large action spaces, and developing RL algorithms that are tailored to inventory control. The review
also assesses the operational dynamics of inventory systems addressed in the literature, such as single/multi-
item models, lead time assumptions, and echelon structures. Underexplored areas include stochastic lead
times, complementary items, quantity discounts, product obsolescence, and multi-echelon networks. The study
concludes by outlining key research gaps and offering directions for future research to advance the integration
of ML in inventory control.

1. Introduction and data-driven inventory systems. Machine learning offers promis-

ing solutions to better manage this trade-off by enabling more accu-

Artificial Intelligence (AI) has become a transformative force in
supply chain management (SCM), enabling organizations to optimize
operations in ways that were previously infeasible. According to sur-
veys, business managers expect Al to save costs in SCM more than in
other disciplines [1]. Supply chain managers have to make a range of
decisions in order to satisfy a multitude of stakeholders. Al has the
potential to impact many of these decisions, offering both assistance
and the potential for fully autonomous decision making [2]. One of

rate forecasting, dynamic decision-making, and adaptive control under
uncertainty.

Recent advances in ML have the potential to impact inventory
control in various ways. Forecasting demand is an important aspect
of inventory control, and ML has the potential to generate superior
forecasting accuracy compared to statistical models [5]. Furthermore,
there has been a flourishing line of research related to data-driven

the key techniques within Al is machine learning (ML). This review
examines the role of ML in inventory control, the practice of making
the optimal inventory decisions.

Inventory control remains a critical challenge in modern supply
chains. In today’s consumer market, customers increasingly expect
rapid fulfillment—driven in part by the growing availability of same-
day delivery options [3]. At the same time, holding excess stock can
lead to significant waste. In the United States alone, an estimated 31%
of the food supply — valued at $382 billion — is discarded annu-
ally [4]. This persistent trade-off between minimizing stockouts and
avoiding excess inventory underscores the need for more responsive

inventory models that leverage data-rich environments to make re-
plenishment decisions [6,7]. In addition, there is growing interest in
applying reinforcement learning to inventory control problems. In this
method, an agent learns to make decisions, unlocking the potential
to address complex inventory control scenarios that were previously
considered intractable [8].

A growing body of literature explores the application of ML to
inventory management, yet most existing reviews fall short in two key
ways. First, they tend to group papers by ML algorithm (e.g., neural
networks, decision trees) without examining how ML is functionally
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Summary of related systematic reviews of machine learning in inventory control. * papers that do consider the ML-integration aspect but only focus on a single

method of integrating ML such as reinforcement learning.

Article Area of review ML integration Inventory system Time span Articles
characteristics

Gutierrez et al. [9] ML in inventory control - - 2014-2024 81
Albayrak Unal et al. [10] ML in inventory control - - 2012-2022 59
Rolf et al. [11] Reinforcement learning in SCM X* - 2000-2021 103

de Castro Moraes and Yuan [12] data-driven newsvendor problems x* - all until 2021 24
Our review ML in inventory control X X 1980-2024 122

integrated—whether as a forecasting tool or directly into the optimiza-
D of r

tion technique. Second, they often overlook the underlying inventory
system dynamics, such as stochastic lead times, shelf life, or multi-
echelon structures, which are crucial for understanding the applicabil-
ity and limits of ML models in practice. Table 1 contains an overview
of other recent systematic literature reviews.

This review addresses these limitations by synthesizing existing
research at the intersection of ML techniques and inventory system
design. Rather than proposing an entirely new typology, we orga-
nize the literature using well-established inventory modeling dimen-
sions (e.g., demand structure, lead time, product characteristics), and
cross-analyze them with a structured classification of ML integration
methodologies:

» We systematically analyze how machine learning (ML) techniques
are integrated into inventory optimization frameworks (RQ1).
We categorize and synthesize inventory-system characteristics
along eight aspects: number of items and product interactions,
time horizon (single- vs. multi-period), supply process (lead times
and sourcing, including deterministic/stochastic and multi-
supplier cases), procurement structure (e.g., fixed setup costs,
quantity discounts), shortage treatment (backorders vs. lost sales),
shelf-life dynamics (perishability/obsolescence), echelon struc-
ture (single vs. multi-echelon, including serial/divergent/network
forms), and capacity constraints. This framing lets us pinpoint the
operational contexts in which ML has been applied (RQ2).

We identify key gaps and emerging opportunities in the literature,
offering a roadmap for future research (RQ3).

The remainder is structured as follows. Section 2 describes the
systematic review methodology. Section 3 reports publication trends
and a meta-analysis of the corpus. Section 4 presents the classifica-
tion framework. Section 5 synthesizes the literature by category and
addresses RQ1 and RQ2. Finally, Section 6 concludes and outlines
directions for future research (RQ3).

2. Review methodology

We conducted a semi-systematic literature review [13], structured
around PRISMA-style stages—identification, screening, eligibility, and
inclusion. This approach suits our goal of synthesizing a broad, multi-
decade field by combining descriptive statistics with qualitative analy-
sis [14]. Our review methodology is summarized in Fig. 1.

Research questions. We organized the review around three questions:

* RQ1: How is machine learning integrated into the inventory
optimization framework?

+ RQ2: What types of inventory system characteristics have been
considered?

» RQ3: What are the key directions for further research?

Sources and search strategy. We searched Scopus for 1980-September
2024. Scopus was selected for its broad coverage of interdisciplinary
research in management science, computer science, and engineering.
To address challenges in keyword selection, we prioritized terms
commonly used in recent, high-quality publications to ensure alignment

RQ 1: How is machine learning integrated into the inventory optimization framework?
RQ 2: What type of inventory system characteristics have been considered?
RQ 3: What are directions for further research?

Selection of database

Scopus

Search query Remaining results

“Inventory management” OR “Inventory control” OR
“Inventory optimization” OR "newsvendor” OR
“Joint replenishment” OR"ABC classification” OR
“Inventory Classification” OR
‘multi-criteria inventory classification”

AND
‘Machine learning” OR "Deep learning” OR
“Reinforcement learning”

AND
Date >= January 1980 AND Date <= September 2024

640 results
324 journal articles
316 conference papers

Inclusion criteria journal articles

164 journal +
82 conference
papers = 246 papers

Include: Journal articles: EF score > 50th percentile +
conference papers > 1 cites per year

Abstract scan: Only include inventory control articles 115 articles

Include papers without EF / EF < 50th percentile (7) 122 articles

Total 122 articles: 104 journal articles and 18 conference papers

Fig. 1. Review methodology.

with current methodological trends and terminologies in the field.
While this inevitably skews the search results toward more recent
contributions, it enables a more accurate representation of contempo-
rary research practices. To mitigate the risk of omitting foundational
literature that uses older or alternative terminology, we employed a
snowballing technique — a backward and forward citation search —
on key papers identified in the initial dataset. This process led to
the inclusion of important terms such as “newsvendor” and “joint
replenishment”, which were underrepresented in the original keyword
set but are essential to the inventory control literature. The final query
blends ML terms with inventory control-specific terminology (query
details are displayed in Fig. 1).

Screening and quality filters. The initial search returned 324 journal
records and 316 conference records (total 640). Because of the large
number of articles, we applied filters: journals at or above the 50th per-
centile on the Eigenfactor score [15] and conference papers with more
than 1 citation per year. We then removed duplicates and screened
titles/abstracts. If needed, full texts were reviewed. During quality
control, we noted that several papers, cited frequently by other key
works in the corpus, had been excluded by the Eigenfactor (EF) filter
because their journals lacked an EF score or were just below the cutoff.
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Fig. 2. Publications per year (n = 122). Articles before 2000 were grouped.

Table 2
Publications per journal.

Journal Count

=
o

Expert Systems with Applications

European Journal of Operational Research
Computers and Industrial Engineering

International Journal of Production Research
International Journal of Production Economics
Management Science

Computers & Industrial Engineering

Journal of the Operational Research Society
Operations Research

Annals of Operations Research

Applied Soft Computing

Computers and Operations Research

Manufacturing and Service Operations Management
Decision Support Systems

Engineering Applications of Artificial Intelligence
Production and Operations Management

Journal of Intelligent Manufacturing

Transportation Research Part E: Logistics and Transportation Review
Other

N =
—_

NNMNDNMNDNMNNMNNNDNDDNDWWWSAEID

N
2]

These papers were verified and retained, yielding seven additional
inclusions.

Eligibility criteria. We included studies that (i) address an inventory
control decision problem and (ii) apply machine learning (forecasting,
ML-integrated optimization, or RL). We excluded studies that (a) are
purely managerial/behavioral without formal ML or optimization, (b)
focus primarily on vehicle routing/ride-hailing/last-mile without an in-
ventory decision, or (c) are domain-specific infrastructures (e.g., power,
water, gas) where the “inventory” concept does not generalize to stock
control.

Inclusion and additions. The process yielded 122 included studies (104
journal, 18 conference). During snowballing we identified three semi-
nal papers not captured by the keyword query and added them.

3. Publication trend and analysis

The journal publications are published in the journals shown in
Table 2. There is a clear upward publication trend as shown in Fig. 2.
Although this could be attributed to the overall increase in scientific
publications (see STM [16]), the magnitude of the growth suggests
that ML is gaining interest among researchers in the field of inventory
control.

Table 2 shows the publications per journal. Given the review’s focus
on inventory control, it is unsurprising that most of the journals fall
within the field of operations research.
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RQ1: How is ML integ into the optimization fr k?

- ML integration (A)

RQ2: What type of inventory system characteristics have been considered?

- Number of items (B)
-Number of periods (C)
-Supply process (D)
-Procurement structure (E)
-Backorders/lost sales (F)
-Shelf life considerations (G)
-Echelons (H)
-Capacity constraints (1)

Complementary indicators

- ML algorithms used
- Fraction of applied work

Fig. 3. Classification framework linking the research questions to the typology
dimensions and complementary indicators used in this review.

4. Classification framework

The analysis follows a classification framework structured around
the two research questions. It comprises (i) a typology that captures
the conceptual dimensions of how ML is applied (RQ1) and which
inventory systems are studied (RQ2), and (ii) two complementary
indicators — ML algorithms used and fraction of applied work — that
provide corpus-wide trend analyses related to these questions. The
typology offers an interpretable mapping of the literature through nine
letter-coded dimensions, while the complementary indicators summa-
rize technical and empirical tendencies beyond the typology. Fig. 3
illustrates this framework and Fig. 4 presents the typology with each
dimension described in detail.

4.1. Classification elements RQ 1: How is ML integrated into the inventory
optimization framework?

ML integration (A)

A thorough reading of the literature revealed that ML techniques
can be applied to inventory control in several main ways. Firstly,
ML can be used to forecast demand that is then used in traditional
inventory control optimization models. This is the most straightforward
application of ML and we call this approach separate estimation and
optimization (A1). We also include in Al papers that estimate not
only point forecasts but also variances, quantiles, full distributions, or
that select/weight historical scenarios conditional on features. In all
such cases, the ML model is trained on statistical accuracy (e.g., MSE,
likelihood, pinball) and its output serves as an input to a subsequent
optimization model.

Articles that incorporate ML directly in the optimization step are
grouped in the category of static ML-integrated optimization (A2). In this
category, we include the “data-driven inventory models” exemplified
by works such as Bertsimas and Kallus [6] and Ban and Rudin [7].
Instead of separating forecasting and optimization, these models train
with respect to the operational objective (e.g., underage/overage cost)
or learn a mapping from state-features directly to decisions (including
imitation of solver-optimal decisions) using a fixed (“static”’) dataset;
the learned policy does not adapt via interaction after training. Our
distinction between Al and A2 is partly motivated by a prevailing
trend in the literature, with researchers advocating for the integration
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(A) ML integration (B) Number of items

(C) Number of periods (D) Supply process

A1: Separate estimation and optimization
A2: Static ML-integrated optimization
A3: Dynamic ML-integrated optimization
A4: Other methods

B1: Single item

B2: Joint replenishment
B3: Substitutable items
B4: Complementary items

C1: Single period
C2: Multi-period

D1: Immediate replenishment
D2: Positive lead time

D3: Stochastic lead time

D4: Variable lead time

D5: Multiple suppliers

(E) Procurement structure (F) Backorders / lost sales

(G) Shelf life considerations

(H) Echelons () Capacity constraints

G1: None
G2: Deterioration

E1: No fixed cost
E2: Fixed cost
E3: Discounts present

F1: Backorders
F2: Lost sales

G3: Obsolescence

11: Unconstrained
12: Constrained

H1: Single echelon
H2: Multi-echelon

Fig. 4. Proposed inventory control typology.

of forecasting and optimization steps [17]. Additionally, several arti-
cles utilize this distinction, contrasting ML-integrated approaches with
those in category Al [18,19].

Category A3, dynamic ML-integrated optimization, also integrates ML
into the optimization step but differs fundamentally in how the learning
process is conducted. These articles employ reinforcement learning
(RL) to derive optimal policies through sequential interaction with a
simulated environment. The term dynamic refers here to the agent—
environment feedback loop: the policy is not fixed after training on a
static dataset (as in A2) but evolves through iterative decision-outcome
cycles. This characteristic makes RL-based approaches qualitatively dif-
ferent from the data-driven models in A2 and justifies their treatment as
a separate category. Furthermore, RL has emerged as a major research
stream within operations research over the past decade, warranting
special attention [8].

Category A4 — other methods contains articles that do not fit neatly
into the aforementioned categories. These contributions are reviewed
on a per-topic basis (e.g., inventory classification, backorder prediction,
or hybrid heuristic/metaheuristic approaches assisted by ML).

4.2. Classification elements: RQ2: What type of inventory system charac-
teristics have been considered?

Inventory control has its origin in the economic order quantity
(EOQ) model formulated by Harris in 1913 [20]. The model aims to
optimize the order quantity by taking into account order costs and
holding costs, assuming deterministic and constant demand. In addi-
tion, this model is considered single-item, meaning that it optimizes
for the inventory of each item separately, not taking into account inter-
item dependencies. Inventory theory has since expanded to include a
multitude of models that account for stochastic demand, variable lead
times, single- or multi-echelon inventory, perishable items, and produc-
tion planning. Each of these models provides added value depending on
a company’s specific inventory characteristics.

In this review, we will examine the model characteristics along
various dimensions that are incorporated in our proposed typology
(Fig. 4). In order to identify relevant dimensions, we draw upon earlier
typologies such as Prasad [21], de Kok et al. [22], and Silver [23].
In addition, a recently compiled research handbook featuring many
leading academics in the field of inventory control was used to inform
the selection of relevant dimensions [24]. All dimensions (B through I)
are incorporated into our proposed typology (Fig. 4).

The next subsections will discuss each of the dimensions (B through
I) in more detail.

4.2.1. Number of items (B)

Categories B1-B4 are taken directly from Silver’s taxonomy [23].
Most of the literature in inventory control is devoted to modeling a
single item in separation of all other items (B1). However, cost might be
saved when ordering items together (B2). Common approaches to doing
this include cyclic ordering [25]. Category B3 contains models with

product substitution. When items are out of stock, a customer might
opt for a different item. It is relevant for inventory models to consider
this substitution effect because a stockout will not necessarily result in
a lost sale [26]. Complementary items, denoted as B4, refer to multi-
item models in which the service level depends on multiple items being
in stock. This may be encountered in, for example, assemble-to-order
systems, where the absence of one component can result in the inability
to manufacture the entire end product [27]. Spare part inventory
problems may also involve multi-item models, as parts are required to
support the availability of a capital good, although single-item models
also exist [28].

4.2.2. Number of periods (C)

Inventory models can either consider a single period or multiple pe-
riods. In some situations (newspapers, fashion), there is a short selling
period and excess stock cannot be used to cover the demand in the
following period. Single-period models (C1) decouple adjacent periods
and do not account for leftover inventory from previous periods. This
simplifies the analysis. An example of such a model is the classic
newsvendor problem [29]. Multi-period models (C2) do not consider
excess inventory as lost. There is, however, a holding cost associated
with inventory.

4.2.3. Supply process (D)

When replenishing stock, the speed and manner in which replenish-
ment arrives are important considerations. Longer lead times require a
higher optimal base stock level [30]. Many models assume immediate
replenishment (L = 0)(D1). Other papers assume lead times to be
known and fixed on a certain number of periods (L > 1)(D2). Stochastic
lead times are sometimes also considered (D3). Category D4 includes
models in which lead time varies by product. Dual sourcing models
typically involve two suppliers per stock keeping unit, with one usually
offering a shorter lead time at a higher cost, while the other provides a
longer lead time at a lower cost [31]. We group these articles into D5.

4.2.4. Procurement structure (E)

Most inventory models separate a fixed, quantity -independent cost
per order from a variable per-unit purchase cost. We write the procure-
ment cost for an order of size z as C(z) = K +c- z, where K is the fixed
ordering/setup cost and ¢ the unit price. When K = 0 (E1) there is
no incentive to batch orders; when K > 0 (E2) each order triggers a
fixed charge, capturing, for example, administrative/handling fees for
external purchasing or a production setup for in-house manufacturing.
Category E3, following Prasad [21], covers discount schemes such as
quantity discounts or sudden discounts introduced by the supplier.

4.2.5. Backorders/lost sales (F)

When a product is out of stock, various outcomes are possible.
Some models incorporate backorder costs (F1), meaning the sale is
not lost but incurs an additional delivery-related fee. Other models
treat excess demand as lost sales — the newsvendor problem is a
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Fig. 5. Fraction of papers using different ML integration approaches per year.

common example. The newsvendor model is a simple single-period
model in which shortage is charged at a “shortage cost” and excess
inventory is charged at an overage cost. All excess inventory is therefore
salvaged at the end of the period and is not carried over. Although
the newsvendor model is relatively tractable, multi-period lost sales
systems are generally more complex and less tractable [32].

4.2.6. Shelf life considerations (G)

Most classic inventory models do not take into account shelf life
considerations. These models either assume unlimited shelf life or
simply do not consider any inventory to carry over into the next period
(such as the newsvendor model). We will group these articles into
category G1. Category G2 includes models with deterioration schemes,
which are especially relevant for fresh food inventory systems. Category
G3 considers inventory subject to obsolescence. These models often
assume unlimited shelf life, but demand declines as the product ages.
Obsolescence is common, for example, in electronics: although older
devices remain functional and degrade slowly, they can quickly become
obsolete due to technological innovation.

In this review, articles employing the classical newsvendor model
will be classified under the category G1. Although these articles do
account for perishable inventories by salvaging excess inventory at the
end of the period, they are grouped as G1 to distinguish them from
more complex deterioration schemes.

4.2.7. Number of echelons (H)

Single echelon systems (H1) are the most common in the literature.
They focus on optimizing the inventory level at a single stock point
per stock-keeping unit. In multi-echelon systems (H2), stock-keeping
units move through a network of installations toward the end customer.
These models seek to determine the optimal inventory levels at each
installation point.

These installations may be configured in various ways. One such
configuration is the serial system, in which installation 1 orders from
installation 2, which in turn orders from installation 3, and so on [33].
Other configurations also exist, such as one warehouse restocking
multiple retail locations. Scenarios involving multiple installations in-
troduce additional decision variables for each location. These problems
are thus considered more complex. Notable approaches include Clark
and Scarf’s method, which first solves for installation 1 and then for
subsequent installations [34].

4.2.8. Capacity constraints (I)

Inventory systems are often subject to capacity constraints. For ex-
ample, a fashion retailer’s product assortment is constrained by limited
shelf space. In manufacturing systems, constraints often involve limited
storage space for semi-finished products. It is known that inventory sys-
tems modeled without capacity limits are often a poor proxy for systems
that are subject to these limits [35]. As environmental considerations
like carbon budgets gain relevance, capacity constraints may play a
more critical role — making this a promising area for future research.
This review distinguishes between papers that do not consider capacity
constraints (I1) and papers that do (I2).

4.3. Complementary indicators

In addition to the typology dimensions discussed above, two com-
plementary indicators were tracked to contextualize the corpus and to
enable trend analyses over time: (i) the ML algorithms used, which
summarizes the technical methods applied across studies and relates
broadly to RQ1, and (ii) the fraction of applied work, which distin-
guishes between empirical and simulation-based analyses and comple-
ments both research questions. These indicators provide quantitative
context — showing how algorithmic choices and empirical validation
have evolved — but are not assigned letter codes, as they summarize
corpus-wide tendencies rather than typology categories.

4.3.1. ML algorithms used

ML is a subfield of artificial intelligence (AI) that focuses on the
development of algorithms and models that enable computers to learn
from data and make predictions or decisions without these being explic-
itly programmed. The fundamental idea behind ML is to allow systems
to automatically improve their performance over time by learning from
experience. A wide variety of algorithms exist in the field of ML.
Broadly speaking, these techniques fall into supervised, and unsuper-
vised learning techniques. In supervised learning, the algorithm learns
from a labeled dataset (such as historic demand), whereas unsupervised
techniques find patterns in data that are not labeled. Within these
categories, there are a multitude of algorithms such as Artificial Neural
Networks (ANNs), linear regression, decision trees, and others.
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(A) ML integration (B) Number of items

(C) Number of periods (D) Supply process

A1: Separate estimation and optimization (16) B1: Single item (82)

C1: Single period (26) D1: Immediate replenishment (56)

A2: Static ML-integrated optimization (23)

A3: Dynamic ML-integrated optimization (51)

A4: Other methods (32)

B2: Joint replenishment (3)
B3: Substitutable items (2)
B4: Complementary items (0)

C2: Multi-period (64)

D2: Positive lead time (21)
D3: Stochastic lead time (4)
D4: Variable lead time (5)

D5: Multiple suppliers (3)

(E) Procurement structure

(F) Backorders / lost sales

(G) Shelf life considerations

(H) Echelons

(I) Capacity constraints

E1: No fixed cost (56)
E2: Fixed cost (26)

F1: Backorders (34)
F2: Lost sales (57)

G1: None (71)
G2: Deterioration (17)

H1: Single echelon (60)
H2: Multi-echelon (30)

I1: Unconstrained (71)
12: Constrained (19)

E3: Discounts present (2)

G3: Obsolescence (0)

Fig. 6. Proposed typology of inventory system characteristics. The numbers in parentheses indicate the count of papers that consider each characteristic. Since
some papers analyze multiple settings, they may be counted in more than one category.

Beyond supervised and unsupervised learning, we recognize rein-
forcement learning (RL) as a distinct category. While deep reinforce-
ment learning (DRL) may employ neural network architectures similar
to those used in supervised learning, RL fundamentally differs in its
learning paradigm: it focuses on learning optimal actions through in-
teraction with an environment, guided by trial-and-error and feedback
in the form of rewards. Because RL algorithms are designed to address
sequential decision-making problems — where the goal is not just to
predict or classify but to optimize long-term outcomes — they war-
rant separate treatment from traditional supervised and unsupervised
approaches.

This review assesses the frequency of each technique’s usage by
recording how often it appears in the literature. Since most papers em-
ploy multiple techniques, double counting is permissible. The primary
objective is to identify the most prevalent techniques in the literature.

4.3.2. Fraction of applied work

This review examines the fraction of papers that use real-world
data as opposed to synthetic datasets. Other authors have noted that
ML applications in the literature only consider stylized problems with
synthetic data instead of realistic real-world problems [11]. The appli-
cability of newly developed techniques is important to the inventory
control literature. Therefore, it is essential that enough empirical stud-
ies evaluate their practical effectiveness. Accordingly, we assess how
many studies utilize real-world data obtained from companies.

5. Analysis

Fig. 5 shows the field’s gradual shift away from separate estimation
and optimization (A1) toward ML-integrated methods—first to static ML-
integrated optimization (A2) and, more recently, to dynamic ML-integrated
optimization (A3, RL). Two forces explain this movement. First, forecast
accuracy does not guarantee decision quality: the training loss for
a predictor can be misaligned with inventory costs, especially under
positive lead times, capacity limits, or asymmetric overage/underage
trade-offs [17]. A2 addresses this by embedding the inventory objective
directly in a supervised loss. Second, when actions materially shape fu-
ture states — multi-echelon flows, perishability, or stochastic lead times
— endogeneity and feedback effects become important. A3 addresses
this by learning from interaction with a simulated environment.

Fig. 6 displays the variety of inventory characteristics that are
considered in the literature across all methods. We see that most
aspects are considered by the literature, with the notable exception
of complementary items (B4) and obsolescence (G3). In addition we
see that the literature is skewed toward simpler model assumptions,
especially on number items (B) and lead time (D).

Sections 5.1-5.3 examine how machine learning is integrated into
inventory optimization (A1-A3) and where each approach is used across
inventory characteristics B-I (number of items; number of periods;
supply process; setup/ordering costs; backorders vs. lost sales; shelf

life; echelons; capacity). We treat RQ1 and RQ2 jointly: for each ap-
proach we summarize the modeling idea, then analyze its fit to specific
problem features and note underexplored combinations.

Section 5.4 briefly covers applications that fall outside A1-A3
(e.g., inventory classification). Section 5.5 summarizes algorithmic
trends. Section 5.6 quantifies the share of studies using real-world
versus simulated data.

5.1. A1l: Separate estimation and optimization

The articles in this category use ML to produce inputs for established
inventory models. This includes point forecasts, estimates of variance,
quantiles or full conditional distributions, and feature-conditioned sce-
nario sets. These ML components are trained for statistical accuracy and
then fed into standard optimization (e.g., newsvendor, Wagner-Whitin,
stochastic/robust programs). In total, 16 articles were classified under
this category, displayed in Table 3. Notably, there has been a gradual
decline in new contributions, which may reflect a growing consensus
that integrating forecasting and optimization can lead to improved
outcomes, as noted earlier.

5.1.1. Methodological contributions

Recent years have shown that ML can achieve superior forecasting
accuracy compared to traditional statistical approaches [5]. This has
encouraged researchers to apply ML techniques to inventory control.
For example, Shi [46] employs ML to estimate both the mean and
standard deviation of demand (the latter based on historical forecast
errors), before applying a standard newsvendor model to determine the
optimal order quantity. Another advantage of ML models is their ability
to seamlessly incorporate additional data sources available within or-
ganizations. For instance, Abolghasemi et al. [52] utilize promotional
data to enhance forecast accuracy. However, they also find that for
products with high volatility, conventional methods can sometimes
outperform ML models both in forecasting accuracy and inventory
performance.

ML can also be integrated with stochastic and robust optimization
approaches. Lopez Lazaro et al. [36] integrate ML into robust optimiza-
tion to optimize cash inventories of banks. In their robust optimization
setup, they use the training set errors to build a confidence interval
around demand. Galli et al. [43] use a similar approach, also for blood
inventory optimization. A powerful aspect of these approaches is that
they do not assume a standard distribution of demand, but let the ML
model generate this distribution, potentially providing a more realistic
fit to the data.

Other approaches that focus on distributional forecasting are also
present in the literature. Ulrich et al. [44] apply several models that
belong to the class of Generalized Additive Models for Location, Scale
and Shape (GAMLSS), to forecast the distribution of demand and use
this to select the optimal order quantity in the newsvendor model. They
show that most of the models that belong to this class outperform stan-
dard regression models in terms of inventory cost. Cao and Shen [37]



R. Bergsma et al.

Table 3
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Articles that use the separate estimation and optimization approach (A1) with number of items (B), number of periods (C), lead time assumptions (D), setup cost
(E), shelf life assumptions (G), single/multi-echelon (H), and capacity constraints (I).

Article Year B C D E F G H I
items periods supply procurement back shelf echelon constraint
process structure order life

Lopez Lazaro et al. [36] 2018 B1 C2 D1 E2 F2 G1 H1 11
Cao and Shen [37] 2019 Bl Cl D1 El F2 Gl H1 I1
Abolghasemi et al. [38] 2020 B1 Cl D1 El F2 Gl H1 11
Li et al. [39] 2021 Bl Cc2 D1 E2 F1 G2 H1 11
Pereira and Frazzon [40] 2021 - - - - F1, F2 - H2 I1
Deng and Liu [41] 2021 - Cc2 - - - - H2 11
Gongalves et al. [42] 2021 B1 C1 D1 El F1 Gl H1 11
Galli et al. [43] 2021 Bl Cc2 D1 E2 - Gl H1 1
Ulrich et al. [44] 2021 Bl Cl D1 El F1 Gl H1 11
Shokouhifar and Ranjbarimesan [45] 2022 Bl C2 D1 E2 F2 G1 H2 11
Shi [46] 2022 Bl C1 D1 E2 F2 Gl H1 11
Li et al. [47] 2022 B2 c2 D1 - F1 G2 H1 I1
Singh and Mishra [48] 2023 B1 Cc2 D1 E2 F1 G2 H1 11
Fan et al. [49] 2024 Bl Cc2 D5 El F2 Gl H1 11
Mete Ayhan and Kir [50] 2024 Bl Cc2 D1 El - Gl H1 5l
Singh and Mishra [51] 2024 B1 c2 D2 E2 F1, F2 G2 H1 12

propose a new neural network model for quantile forecasting and apply
this to the newsvendor problem. These approaches offer an advantage
over approaches that simply use the historical forecast’s error standard
deviation, in that they have the ability to also differentiate between
forecasts that are more or less certain. For example, when a company
puts certain products on sale, this not only increases expected demand
but also increases uncertainty.

5.1.2. Inventory system characteristics

Al appears beyond single-period settings whenever a forecast (point,
quantile, or scenarios) can be plugged into an existing model and
solved as usual: multi-period cash inventories [36], hospital drug
replenishment via scenario inputs [43], plug-ins to classical proce-
dures (e.g., Wagner-Whitin, Silver-Meal) [50], and multi-echelon con-
texts [41].

The strength of Al is interoperability: ML outputs drop cleanly into
linear/stochastic/robust formulations without redesigning constraints
or solvers, keeping models explainable and auditable. The trade-off is
that forecasts are not co-optimized with the policy, so errors can propa-
gate, especially with positive/uncertain lead times. Consistent with this,
most Al studies in our sample assume immediate replenishment and
single-item settings, with fewer cases involving uncertain lead times,
strict capacities, or multi-echelon structures (see Table 3).

While theory suggests that end-to-end integration of forecasting
and decision making can improve inventory performance, the interop-
erability with existing optimization procedures of Al is often highly
valuable in practice. We see value in applying Al forecasting to richer
settings — positive or stochastic lead times, capacity constraints, multi-
echelon networks, perishables, and joint replenishment/substitution
— and testing whether distributional/quantile models yield decision
gains over simple baselines. A practical lever is to align forecasts with
the decision context (e.g., forecast congruence [53]) to reduce order
volatility without changing the optimization backbone.

5.2. A2: static ML-integrated optimization

In this category, the forecasting and optimization steps are integrated
rather than treated separately (as in (Al) separate estimation and
optimization). We refer to these as static ML-integrated methods because
the decision rule is obtained by minimizing an empirical risk (a loss
that embeds inventory costs) on a fixed dataset; the policy is not
learned via interaction with a simulated environment or state tran-
sitions (as in A3 (dynamic ML-integrated optimization)). In practice,
these “data-driven” models leverage feature-rich data and asymmetric
cost structures (underage vs. overage) by optimizing a modified loss
that targets the operational objective directly. We include 23 articles
in this category (see Table 4).

5.2.1. Methodological contributions

There has been substantial development in the inventory control lit-
erature regarding data-driven newsvendor models. These models often
extend the classic Sample Average Approximation (SAA) method [54].
In SAA, the unknown probability distribution of demand is replaced
by the empirical distribution formed from sample data. The standard
SAA formulation for the newsvendor problem is given by Cheung and
Simchi-Levi [55]:

n

¢* = argmin 1 Z [eu(d; = @)* +c,(a—d)*].

>0 N3
where n is the sample size, d,,...,d, are historical demand observa-
tions, ¢, is the underage cost, ¢, is the overage cost, g is the decision
variable (order quantity), and (x)* = max(0, x).

Since the basic SAA does not incorporate feature or covariate in-
formation, several authors have extended this approach to include
such data. Bertsimas and Kallus [6] propose a weighted SAA method,
where the empirical distribution is replaced by a weighted empirical
distribution based on a feature vector x. The key idea is that, given
a new feature vector x, some historical demand scenarios are more
relevant than others, and thus should be assigned higher weights. The
modified SAA equation becomes:

n

q*(x) = arg min Z w, ;(X) [cu(d,- -9t +c,(q— d,~)+] ,
420 =]

where w, ;(x) is a weight assigned to each historical observation i, based
on the similarity between the feature vector x and the observed feature
vector x;. The weights are non-negative and sum to one: };"_, w,;(x) =
1. Bertsimas and Kallus [6] discuss several choices for the weight
function, including k-nearest neighbors, random forests, and kernel
regression. The subscript n in w, ;(x) refers to the sample size, and i
indexes the historical data points (see Table 4).

Ban and Rudin [7] address the data-driven newsvendor problem
from a different perspective by modeling the optimal order quantity
as a function of the feature vector. Specifically, they formulate the
problem as:

n

ockin ; leu(d; = a(x)* + e (a(x) — dp)*].

where y denotes the feature space, and ¢(-) is a function mapping
feature vectors x; € y to order quantities. For example, a linear function
is given by ¢(x;) = ¢'x; = Zj’f:] 4;x;;, where p is the number of features,
q; are the coefficients to be estimated, and x;; is the jth feature of
the ith observation. This formulation can be solved using quantile
regression, which can be implemented as a linear program. Ban and
Rudin [7] also consider kernel-based approaches for greater flexibility.
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Table 4
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Articles that integrate use static ML-integrated optimization (A2) with number of items (B), number of periods (C), lead time assumptions (D), setup cost (E), shelf

life assumptions (G), single/multi-echelon (H), and capacity constraints (I1).

Article A B C D E F G H I
ML items periods supply procurement back shelf echelon constraint
integration process structure order life

O’Neil et al. [56] 2016 Bl Cl D1 El F2 Gl H1 11

Ban and Rudin [7] 2018 Bl C1 D1 El F2 G1 H1 I1

Huber et al. [19] 2019 Bl C1 D1 El F2 Gl H1 11

Zhang and Gao [57] 2019 Bl Cl D1 E1l F2 G1 H1 11

Oroojlooyjadid et al. [58] 2020 Bl C1 D1 El F2 Gl H1 11

Bertsimas and Kallus [6] 2020 Bl C1 D1 El F2 G1 H1 12

Punia et al. [59] 2020 Bl Cl D1 El F2 G1 H1 12

Abbasi et al. [60] 2020 Bl Cc2 D1 - F2 G2 H1 1

Bertsimas and Koduri [61] 2021 B1 C1 D1 El F2 G1 H1 11

Chen [62] 2021 B1 Cl D1 El F2 G1 H1 11

Clausen and Li [63] 2022 Bl Cc2 D1 El F2 Gl H1 11

Pirayesh Neghab et al. [64] 2022 Bl Cl D1 E2 F2 G1 H1 I1

Qi et al. [65] 2023 Bl Cc2 D4 E1l F1 G1 H1 11

Tian and Zhang [66] 2023 Bl Cl D1 E1l F2 G1 H1 11

Ren et al. [67] 2023 Bl Cc2 D1 E2 F1 Gl H1 5l

Bertsimas et al. [68] 2023 Bl C1 D1 E1l F1 Gl H1 11

Forel et al. [69] 2023 Bl Cl D1 El F2 G1 H1 11

Zhang and Tan [70] 2023 Bl C1 D1 El F2 Gl H1 11

Kallus and Mao [71] 2023 B1 C1 D1 E1l F2 Gl H1 11

Chen et al. [72] 2023 B3 Cl D1 E2 F2 G1 H1 11

Bertsimas and Kim [73] 2024 Bl C1 D1 El F2 Gl H1 11

Qi et al. [74] 2024 Bl C2 D1 El F2 Gl H1 I1

van der Haar et al. [75] 2024 B1 Cc2 D2, D5 E1l F1, F2 G1, G2 H1 11

In addition to these methods, authors have applied neural networks
to solve the newsvendor problem. Oroojlooyjadid et al. [18] modify the
loss function of the deep learning algorithm to obtain the minimizer of
the newsvendor cost function directly. They compare their approach to
other benchmark approaches such as the methods introduced by Ban
and Rudin [7] and Bertsimas and Kallus [6] and find that it outperforms
these methods.

All of the aforementioned methods integrate the forecasting and
optimization steps and leverage feature data. In principle, integrating
these approaches is expected to outperform the separate estimation and
optimization approach (Al), as it retains more of the dataset’s informa-
tion during optimization, rather than relying on assumed parameters
like mean and standard deviation. However, Huber et al. [19] find
that the out-performance of the integrated approaches only pertains
to situations in which target service levels are below 0.8. In other
words, if the holding costs become increasingly large compared to the
stockout costs, integrating estimation and optimization has benefits.
The literature would gain from additional studies to further substantiate
these outcomes, given their significance for guiding research in this
field.

5.2.2. Inventory system characteristics

Despite the methodological variety, most A2 papers utilize data-
driven newsvendor-type formulations, where the inventory cost is em-
bedded in a supervised loss function and minimized on historical sam-
ples (e.g., Bertsimas and Kallus [6],Ban and Rudin [7],0roojlooyjadid
et al. [18]). Single period models such as the newsvendor model are
a very natural pairing to this modeling approach as the loss function
of these methodologies does not capture multi-period/dynamic effects.
Capacity does appear in these models by for example adding constraints
via Lagrangian duality [6] or simple heuristics when quantile-based
orders exceed shelf space [59]. In practice, these approaches shine
where rich covariates can inform demand. For instance, [6] study a
DVD retailer where features such as IMDB ratings and review signals
augment the historical data.

Some papers do move beyond these simplified settings. Qi et al. [65]
introduce an “end-to-end” inventory model, which combines dynamic
programming for labeling optimal order quantities with neural network
training for prediction. Their approach outperforms benchmark models
and excels in accommodating complex inventory settings, including

variable lead times for different products. Bertsimas and Koduri [61]
introduce a method based on regression in reproducing kernel Hilbert
spaces to solve optimization problems. Their approach takes the single-
period newsvendor problem as one example, but is able to deal with
sequential decision making as well, opening doors for further research
in applying this model to more complex inventory settings. Van der
Haar et al. [75] propose a supervised loss that replaces the Bellman
value term with the portion of future cost that is an irrevocable,
deterministic consequence of today’s order over the lead-time/shelf-life
window—capturing multi-period effects (and, for dual sourcing, via se-
quential expedite/regular losses) while preserving supervised-learning
tractability.

A2 methods that encode multi-period effects directly in the loss
can be far more sample- and compute-efficient than RL (A3), but they
are still lightly tested outside stylized settings. A clear next step is to
evaluate them systematically in contexts such as positive or stochastic
lead times (D2-D3), capacity constraints (I2), multi-echelon systems
(H2), and perishables (G2), using head-to-head benchmarks against the
best-established methods in each problem family. Direct comparisons
to RL to quantify the performance-compute trade-off are also valuable.
Such evaluations would clarify whether this class can retain supervised-
learning tractability while delivering competitive performance in richer
inventory environments.

5.3. A3: dynamic ML-integrated optimization

Reinforcement learning (A3: dynamic ML-integrated optimization)
learns a decision rule by interacting with a simulated environment,
rather than minimizing a fixed, supervised loss as in A2 (static ML-
integrated optimization). The inventory problem is cast as an MDP:
the agent observes a state (e.g., on-hand, pipeline), takes an action
(order), receives a cost/reward, and updates its policy to improve long-
run performance. Because actions today change tomorrow’s state, RL
naturally captures endogeneity and multi-period trade-offs—a good fit
for settings with positive or uncertain lead times, perishables, and
multi-echelon flows. The next subsection surveys methodological con-
tributions (algorithm choices, state/action design, and constraint han-
dling) and then synthesizes where RL has been applied and what
gaps remain. In our sample, A3 is the largest of the three integration
families (51 papers, see Table 5), exceeding the combined counts of
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Al (separate estimation and optimization) and A2 (static ML-integrated
optimization); see Fig. 6 for details.

5.3.1. Methodological contributions

In certain inventory problems, analytical solutions for finding the
optimal policy are only possible when making simplifying assump-
tions. While these simplified policies may offer decision-makers useful
insights, they can also be misleading under real-world complexity.
Various inventory control settings, such as assemble-to-order systems,
are considered intractable and the optimal policy structure remains
largely unknown [76]. Reinforcement Learning (RL) offers a promising
alternative in such settings.

Unlike supervised learning models — which are trained on fixed his-
torical data — RL agents learn by interacting with their environment,
updating their behavior through trial and error [77]. This interactivity
enables RL to account for the long-term effects of actions, a key
advantage in inventory settings where decisions today affect costs and
availability in future periods. Traditional approaches often struggle
to capture this endogeneity of decisions, particularly in multi-period
environments.

To apply RL to inventory control, the problem must first be modeled
as a Markov Decision Process (MDP). In this framework, the system
transitions from one state to another based on the agent’s actions, with
each action yielding a reward according to a predefined function. Over
time, the RL agent learns a policy — a mapping from states to actions
— that maximizes cumulative reward [77].

The application of RL in inventory control has a long history, with
some papers dating back to the 90 s. In that time, reinforcement
learning was applied using case-based reasoning [78-80]. While some
initial results were promising, this line of research did not result
in widespread RL applications within the field. With the increase of
computing power came Deep Reinforcement Learning (DRL), which
utilizes neural network architectures. Famous algorithms are Deep Q-
Learning and AlphaZero (both developed by Google DeepMind) [81,
82]. The widespread application to inventory control soon followed,
with some papers even preceding this “reinforcement learning boom”
(see Table 5).

A variety of RL algorithms have been applied to inventory control.
These can be broadly categorized into,

» Value-based methods (e.g., Deep Q-Learning), where the agent
estimates the expected return (Q-value) for each state-action pair
and selects the action with the highest value,

* Policy-based methods, which learn a stochastic policy directly,

+ Actor-Critic methods such as Proximal Policy Optimization (PPO),
which combine both approaches by learning a policy (actor) and
a value function (critic).

Most recent studies use either value-based methods such as Q-
Learning [107,114] or actor—critic methods like PPO [112,121]. Deep
Q-Learning is favored for its sample efficiency and suitability for dis-
crete action spaces. PPO, on the other hand, offers improved stability
and can handle high-dimensional or continuous action spaces — mak-
ing it especially suitable for complex inventory scenarios. The use
of pure policy-gradient methods remains limited, likely due to their
instability and sample inefficiency in discrete, cost-sensitive inventory
settings. The algorithms used within the papers are discussed more
thoroughly in Section 5.5.

A noticeable trend in recent work is the adaptation of RL algorithms
to better reflect inventory-specific challenges, including non-stationary
demand, perishability, and coordination across multiple actors. For ex-
ample, Mohamadi et al. [118] apply actor—critic methods in a vendor-
managed inventory setting with perishables, while Kaynov et al. [121]
introduce multi-output policy architectures to address action space
complexity in multi-retailer systems. Enhancements in algorithmic scal-
ability and convergence are proposed by Stranieri et al. [122], Tian
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et al. [123], and Luo et al. [125]. These studies collectively underscore
a shift away from off-the-shelf algorithms toward domain-aware, cus-
tomized RL approaches. A more detailed analysis of the algorithms used
— including Q-learning variants, actor—critic models, and recent hybrid
innovations — is presented in Section 5.5.

Many research gaps within the realm of reinforcement learning
remain. Much of the work is primarily focused on stylized inventory
control problems and does not use a real-world case study to verify
the efficacy of DRL (see Section 5.6 for a further discussion of the
fraction of applied studies). Scaling up DRL to real-world problems can
be challenging, as they often involve substantially larger action spaces
when the decision maker must make simultaneous and interdependent
decisions (such as in multi-item models). Some recent studies have
proposed ways to mitigate this issue within the inventory domain.
For example, van Hezewijk et al. [112] reduce the action space of
a multi-item EOQ model by allowing the agent to continue making
production and switching decisions until it determines that no further
actions are needed. Kaynov et al. [121] address a multi-retailer problem
by letting the neural network output several probability distributions —
one per retailer — instead of a single one, as is common in policy-based
methods.

To address similar scalability issues more broadly, a wide line of
RL research has explored how to make learning efficient in large or
structured discrete action spaces. Earlier approaches have used factor-
ization or hierarchical decomposition of the action space, such as binary
or tensor factorizations (see [131-133] for non-deep RL examples,
and [134] for a DRL example). Others have relied on nearest-neighbor or
embedding-based selection among predefined feasible actions [135-138],
while additional strategies employ symbolic representations or hierarchi-
cal and multi-agent formulations to decompose decision spaces [139—
142]. Each of these families of methods improves computational effi-
ciency but often requires extensive parameter tuning or prespecified
action structures.

Building on this stream of work, recent advances have proposed
more flexible solutions directly applicable to inventory settings. Akker-
man et al. [143] introduce Dynamic Neighborhood Construction, which
exploits the structure of discrete action spaces through adaptive neigh-
borhood search guided by the critic’s Q-values, scaling to problems
with up to 107? feasible actions. Vanvuchelen et al. [144] propose a
continuous action representation approach, in which continuous network
outputs are mapped to feasible discrete actions via a direct mapping
function that does not require the feasible-action set to be specified
beforehand. Both methods advance earlier work on action-space re-
duction by achieving higher computational efficiency—for instance, by
avoiding the explicit storage or enumeration of all feasible actions.
The literature would benefit from comparative studies of action-space
reduction and representation approaches to help researchers assess
their relative effectiveness.

In addition to the issue of action spaces, there is the substantial
computational expense involved in applying DRL compared to other
models and heuristics. Deploying these models in companies would
require periodic retraining across many SKUs, which is likely unfeasible
at present for most firms. Batsis and Samothrakis [130] develop a
method in which an agent is trained offline using data pertaining to
different supply chain configurations. The agent was then deployed to
specific supply chain contexts and quickly adapted, achieving perfor-
mance similar to if it had known the context beforehand. Approaches
such as these offer promising directions for further research that could
enhance the scalability of DRL in inventory control.

Unlike the literature in categories Al (separate estimation and opti-
mization) and A2 (static ML-integrated optimization), the RL literature
has a limited focus on forecasting and the use of exogenous vari-
ables. Typically, studies assume a fixed demand distribution and train
agents on simulated data, rather than integrating explicit forecasting
models. A few recent exceptions are emerging. For example, Wang
et al. [111] incorporate ARIMA and LSTM demand forecasts directly
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Table 5
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Articles that use dynamic ML-integrated optimization (A3) with number of items (B), number of periods (C), lead time assumptions (D), setup cost (E), shelf life

assumptions (G), single/multi-echelon (H), and capacity constraints (I1).

Article Year B C D E F G H I
items periods supply procurement back shelf echelon constraint
process structure order life

Anagun [83] 1997 Bl Cc2 D1 E2 F1 Gl H1 11
Giannoccaro and Pontrandolfo [84] 2002 Bl Cc2 D3 El F1 Gl H2 n
Rao et al. [85] 2003 Bl C1 D1 El F2 Gl H2 11
Emerson and Piramuthu [86] 2004 Bl Cc2 D2 E3 F2 G1 H2 11
Ravulapati et al. [87] 2004 Bl Cl D1 El F2 Gl H2 11
Piramuthu [88] 2005 Bl Cc2 D3, D5 El F2 G1 H2 11
Kwon et al. [78] 2008 B1 c2 D2 El F2 Gl H2 12
Kim et al. [89] 2008 Bl Cc2 D2 El F1 Gl H2 1
Jiang and Sheng [79] 2009 Bl C2 D2 El F2 Gl H2 11
Kwak et al. [90] 2009 B1 Cc2 D1 El F1 Gl H2 11
Kim et al. [80] 2010 Bl Cc2 D2 El F1 Gl H2 11
Sui et al. [91] 2010 Bl C2 D1 E2 F2 Gl H2 12
Katanyukul et al. [92] 2011 B1 c2 D1 E2 F2 Gl H1 11
Katanyukul and Chong [93] 2014 Bl Cc2 D1, D2 E2 F1 G1 H1 11
Kara and Dogan [94] 2018 Bl Cc2 D2 E2 F1 G2 H1 n
Vanvuchelen et al. [95] 2020 B2 C2 D1 E2 F1 G1 H1 11
Bharti et al. [96] 2020 B1 c2 D2 El F2 Gl H2 12
Perez et al. [97] 2021 Bl Cc2 D4 El F1, F2 G2 H2 11
Wang and Lin [98] 2021 Bl C2 D4 - - Gl H2 11
Kiyaei and Kiaee [99] 2021 - - - E2 - - - 11
Fallahi et al. [100] 2022 Bl Cc2 D1 El F2 Gl H1 12
Oroojlooyjadid et al. [58] 2022 Bl Cc2 D2 El F1 Gl H2 1
Preil and Krapp [101] 2022 B1 c2 D3 El F1 Gl H2 11
Gijsbrechts et al. [102] 2022 Bl Cc2 D3, D5 El F1, F2 Gl H1,H2 11
Zhou et al. [103] 2022 Bl Cc2 D1 El F1 Gl H1 1
De Moor et al. [104] 2022 Bl Cc2 D2 E2 F2 G2 H1 11
Meisheri et al. [105] 2022 B1 c2 D4 E2 F1 G2 H1 12
Gioia et al. [106] 2022 B3 Cc2 D2 El F2 G2 H1 12
Shakya et al. [107] 2022 Bl C2 D2 El F2 Gl H1 12
Agrawal and Jia [108] 2022 B1 c2 D5 E2 F2 Gl H1 11
Cuartas and Aguilar [109] 2023 Bl Cc2 D2 - - Gl H1 11
Demizu et al. [110] 2023 Bl C1 D1 El F2 Gl H1 I1
Wang et al. [111] 2023 Bl Cc2 D5 E2 F1 G2 H1 12
van Hezewijk et al. [112] 2023 Bl Cc2 D1 E2 F1 G1 H1 12
Mo et al. [113] 2023 Bl Cc2 D2 El F1 Gl H1 1
Lu and Meyn [114] 2023 Bl Cc2 D1 El F1 Gl H1 11
Cheung et al. [115] 2023 B1 c2 D1 E2 F2 Gl H1 11
Zhou et al. [116] 2023 Bl Cc2 D1 El F1 Gl H1 11
Li et al. [117] 2023 Bl C2 D1 El F2 G2 H2 12
Mohamadi et al. [118] 2024 B1 c2 D1 El F2 G2 H2 11
Dehaybe et al. [119] 2024 Bl Cc2 D2 E2 F1, F2 Gl H1 11
Liu et al. [120] 2024 Bl C2 D1 El F2 Gl H2 12
Kaynov et al. [121] 2024 B1 c2 D2 El F1, F2 Gl H2 11
Stranieri et al. [122] 2024 Bl C2 D1 E2 F1 G1 H2 11
Tian et al. [123] 2024 Bl Cl D1 El F1 Gl H1 11
Lee et al. [124] 2024 Bl Cc2 D2 El F2 G2 H2 12
Luo et al. [125] 2024 B1 c2 D1 El F2 Gl H1 12
Yavuz and Kaya [126] 2024 Bl Cc2 D1 El F2 G2 H1 11
Rizqi and Chou [127] 2024 Bl C2 D4 E3 F2 G1 H2 12
Saha and Rathore [128] 2024 B2 c2 D1 E2 F2 G2 H2 12
Stranieri et al. [129] 2024 Bl Cc2 D2 El F1 Gl H2 12
Batsis and Samothrakis [130] 2024 Bl Cc2 D2 E2 F2 Gl H2 12

into the state representation of their RL agent, enabling the agent
to adapt to predicted trends in demand. Liu et al. [120] combine a
maskable LSTM model with PPO. While promising, such approaches
remain rare. Most reinforcement learning studies still treat demand as
an exogenous stochastic process and focus more on policy learning than
demand modeling. A more systematic integration of forecasting into RL
architectures could significantly improve decision quality in real-world
inventory systems.

5.3.2. Inventory system characteristics

Reinforcement learning (RL) has been applied across inventory
settings with diverse — and often more complex — system dynamics
than those typically seen in Al (separate estimation—optimization) and
A2 (static ML-integrated) work. Accordingly, below we review RL

10

papers along all typology dimensions except C (number of periods).
Because RL is built for sequential decision-making, nearly all studies
are multi-period (with only rare single-period demonstrations). Hence,
a discussion of this dimension is omitted.

Number of items (B). Deep RL has been applied to joint replenish-
ment (B2) [95] and scaled to large multi-agent settings [128]. For
substitutable items (B3), Gioia et al. [106] model stockout-driven de-
mand switching. By contrast, complementary-item settings (B4) in
spare parts and assemble-to-order systems are notably absent.! The

1 Wang et al. [111] study spare-part replenishment path optimization, but
their reward treats stocking points independently and does not model item
dependencies; we therefore do not classify it as B4.
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Table 6
Articles with supply process assumptions other than immediate replenishment
(D).

Category Year Reference
D2 2004 Emerson and Piramuthu [86]
Deterministic 2008 Kwon et al. [78]
lead time > 1 2008 Kim et al. [89]
2009 Jiang and Sheng [79]
2010 Kim et al. [80]
2014 Katanyukul and Chong [93]
2018 Kara and Dogan [94]
2020 Bharti et al. [96]
2022 Oroojlooyjadid et al. [58]
2022 De Moor et al. [104]
2022 Gioia et al. [106]
2022 Shakya et al. [107]
2023 Cuartas and Aguilar [109]
2023 Mo et al. [113]
2024 Dehaybe et al. [119]
2024 Kaynov et al. [121]
2024 Lee et al. [124]
2024 Stranieri et al. [129]
2024 Batsis and Samothrakis [130]
D3 stochastic 2002 Giannoccaro and Pontrandolfo [84]
lead time 2005 Piramuthu [88]
2022 Preil and Krapp [101]
2022 Gijsbrechts et al. [102]
D4 2021 Perez et al. [97]
product specific 2021 Wang and Lin [98]
lead times 2022 Meisheri et al. [105]
2024 Rizqi and Chou [127]
D5 2022 Gijsbrechts et al. [102]
Multiple suppliers 2023 Wang et al. [111]

omission of work considering complementary items (B4) is likely due
to number of inter-dependent ordering decisions that have to be made
each period (e.g., five items with three order levels already yield 3°
actions per period). Promising directions include action-space struc-
turing (e.g., factorized or hierarchical policies) (see [112]) and other
dimensionality-reduction techniques tailored to cross-item interactions.

Supply process (D). Most papers assume zero lead time and a single
supplier (D1). In this setting, a replenishment decision is immediately
followed by inventory delivery, so only next-period demand needs to
be considered. This greatly simplifies the problem. Given the inherently
multi-period nature of reinforcement learning (RL), it is somewhat
surprising that so much of the literature is restricted to immediate
replenishment. While the zero-lead-time assumption may be realistic
in certain environments, it does not capture many practical situations.
For this reason, a substantial body of work has considered positive
deterministic lead times (L > 1, D2) as well.

By contrast, stochastic lead times are rarely modeled. Preil and
Krapp [101], for instance, employ a bandit-based RL approach to solve
a multi-echelon problem with random lead times between echelons.
This demonstrates the potential of RL to capture the added uncertainty
of non-deterministic settings. Given that supply chain resilience is
increasingly emphasized [145], the lack of work on stochastic lead
times (D3) represents an important research gap.

A smaller set of studies also examine heterogeneous lead times
across products (D4). Meisheri et al. [105] consider different product-
specific lead times, while Rizqi and Chou [127] extend this by an-
alyzing a multi-echelon system with multiple delivery options and
uncertain discounts. These examples highlight the flexibility of RL in
handling complex, heterogeneous supply settings.

Finally, some work has addressed dual sourcing (D5), where mul-
tiple suppliers exist for the same item [102,111]. Similar to stochastic
lead times, dual sourcing is directly linked to resilience considerations,
as it provides firms with redundancy and flexibility.
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All contributions that move beyond the D1 (immediate replenish-
ment) baseline are summarized in Table 6. Although the literature has
begun to explore richer lead time and sourcing settings, the majority
of research still relies on deterministic lead times. More attention to
stochastic lead times (D3) and dual sourcing (D5) is therefore encour-
aged, as these settings better reflect the challenges faced in resilient
supply chain management.

Procurement structure (E). Approximately half of the papers consider
fixed order costs, while the other half do not. We found almost no
papers that consider discounts (E3). Rizqi and Chou [127] consider
uncertain discounts in their multi-echelon inventory optimization prob-
lem. When a supplier offers a sudden discount, the agent can decide to
acquire extra inventory, thereby reducing costs.

We do not find any papers which consider quantity discounts. Con-
sidering that these discounts are prevalent in practice, this could be a
potentially interesting area of research—especially since reinforcement
learning enables more complex inventory settings.

Backorders/lost sales (F). Lost-sales models are generally harder to
analyze than backorder models. Bijvank et al. [32] survey the classical
lost-sales literature and note that backorders are often assumed for
analytical tractability. In B2B contexts, that assumption may be realistic
because customers are willing to wait. In many consumer settings,
however, stockouts translate into demand that is not recovered, i.e., lost
sales. Given how common these dynamics are in practice, analyzing
them remains important.

In our sample, 28 of the 51 RL papers assume lost sales (F2).
Relative to traditional analytical methods, implementing lost sales in
RL is straightforward — lost demand can be encoded via immediate
penalties and no carry-over in the state — though the choice still affects
learning targets and stability.

Despite this prevalence, relatively few studies isolate the classical
lost-sales problem and test against well-established benchmarks. An
exception is Gijsbrechts et al. [102], who show that an A3C agent
produces strong policies yet retains an optimality gap of about 6.7%
in a controlled setting (lead time 4, underage cost 4). When moving
to settings where the optimal policy is unavailable (e.g., longer lead
times), their RL approach outperforms the benchmark heuristics in
some instances.

Given the practical importance of lost sales, it is encouraging that
many RL studies model them. Part of this prevalence likely reflects
modeling convenience: in RL, lost sales are easy to encode via the
reward, which is a genuine advantage of the approach. Still, more
work on the classical lost-sales benchmark — with transparent, like-for-
like comparisons to established policies — is needed to assess whether
recent RL advances systematically close the remaining optimality gaps.

Shelf life considerations (G). A substantial number of papers consider
perishable products. Modeling perishable products is known to intro-
duce substantial complexity, especially when multiple products are
involved. Perishability models can be categorized into those that con-
sider fixed lifetimes, stochastic lifetimes, and time-dependent life-
times [146]. As shown in Table 7, many of these shelf life assumptions
have been used.

Most papers assume fixed shelf lives. Some papers consider more
complex deterioration schemes. Li et al. [117] apply Q-learning to find
a joint markdown, freshness, and ordering policy. In their study, the
freshness of products is influenced by the policy. RL demonstrates the
capability to handle such complex deterioration schemes, presenting an
opportunity for further research in this direction. Meisheri et al. [105]
apply RL to a system with perishable products. Their problem includes
additional complexities, such as different lead times for each product
and transportation constraints, clearly demonstrating the effectiveness
of RL in handling complex inventory settings.

Papers that consider obsolescence (G3) are not present in our sam-
ple. In obsolescence, it is not the product itself that deteriorates, but



R. Bergsma et al.

Table 7
Papers that consider perishable products (G2) split up by the type of shelf life
assumption.

Category Year Reference
2021 Perez et al. [97]
all inventory is lost
after 30 days 2022 Meisheri et al. [105]
fixed deterioration 2018 Kara and Dogan [94]
rate
2022 De Moor et al. [104]
2022 Gioia et al. [106]
2023 Wang et al. [111]
fixed lifetime 2024 Mohamadi et al. [118]
2024 Lee et al. [124]
2024 Yavuz and Kaya [126]
2024 Saha and Rathore [128]
policy dependent 2023 Li et al. [117]

stochastic lifetime

rather the demand. This occurs, for example, in spare parts systems
where certain capital goods are no longer produced, leading to a decline
in demand for the spare parts. This context is studied in inventory
control literature, but without applying RL [147,148], pointing toward
a gap in the literature.

Number of echelons (H). In multi-echelon systems, two main setups are
common: convergent/serial and divergent [149]. Table 8 groups the RL
papers by echelon type. Recent work clusters around divergent systems,
while convergent/serial cases remain present but fewer in the last four
years. The table also includes a network variant where inventory can be
relocated across nodes [98], and a mixed serial/divergent case [127].
Convergent settings remain useful for benchmarking coordination with
a clear flow structure (e.g., beer-game-type serial chains [58]).

A practical challenge in divergent systems is the growth of the
action space as decisions are coupled across many downstream nodes.
Two recent strategies stand out: Kaynov et al. [121] infer a multi-
discrete action distribution with output nodes that scale linearly in the
number of retailers, and Saha and Rathore [128] use multi-agent RL to
handle large, real-world deployments.

In addition to the serial and divergent multi-echelon systems, we
noticed another type of system more akin to a routing problem. Wang
and Lin [98] consider a distribution network where spare parts are
transported from one node to another to meet demand at various loca-
tions. The inventory does not flow in serial fashion to a single end node,
nor does it diverge to multiple end nodes; it can move in any direction
in the network. Their approach optimizes the replenishment path of
inventory, trying to minimize replenishment times. RL in this context
demonstrates a capability to reduce replenishment time by 40%. The
efficacy of RL in this context clearly encourages other researchers to
further explore this approach.

Overall, Table 8 shows a clear tilt toward divergent applications
of RL, with convergent and network variants also represented. Given
the relevance to the practice of spare part management, we encourage
further exploration of network-type echelon settings, including shared
benchmarks and reporting that make results comparable across studies.

Capacity constraints (). Capacity constraints are common in practice—
retailers face shelf-space limits; manufacturers face finite buffers and
workstation capacities. Such limits complicate inventory models and
are often ignored, yet doing so can be a poor proxy for optimal deci-
sions [35]. In the RL literature, capacity appears in several forms, in-
cluding production limits (e.g., capacitated lot sizing with PPO [112]),
combined storage and ordering limits [125], and storage caps in single-
or multi-agent settings (e.g., [96,107,127-129]).

From an implementation standpoint, authors typically encode ca-
pacity directly into the decision process using a few recurring patterns:
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Table 8
Papers that consider multi-echelon settings.
Structure Year Reference
Convergent/ 2002 Giannoccaro and Pontrandolfo [84]
serial 2004 Emerson and Piramuthu [86]
2005 Piramuthu [88]
2009 Kwak et al. [90]
2020 Bharti et al. [96]
2021 Perez et al. [97]
2022 Oroojlooyjadid et al. [58]
2022 Preil and Krapp [101]
2023 Li et al. [117]
2024 Mohamadi et al. [118]
2024 Batsis and Samothrakis [130]
2003 Rao et al. [85]
2004 Ravulapati et al. [87]
2008 Kwon et al. [78]
2008 Kim et al. [89]
2009 Jiang and Sheng [79]
2010 Kim et al. [80]
Divergent 2010 Sui et al. [91]
2022 Gijsbrechts et al. [102]
2024 Liu et al. [120]
2024 Kaynov et al. [121]
2024 Stranieri et al. [122]
2024 Lee et al. [124]
2024 Saha and Rathore [128]
2024 Stranieri et al. [129]
Network 2021 Wang and Lin [98]
Serial, Divergent 2024 Rizqi and Chou [127]

Table 9
Papers that consider capacity constraints.

Constraint category Year Reference
Max customers per day 2022 Gioia et al. [106]
Ordering capacit; 2010 Sui et al. [91]
§ capacity 2024 Liu et al. [120]
2024 Lee et al. [124]
2008 Kwon et al. [78]
Production capacity 2023 van Hezewijk et al. [112]
2024 Batsis and Samothrakis [130]
Storage and 2022 Meisheri et al. [105]
order capacity 2024 Luo et al. [125]
2020 Bharti et al. [96]
2022 Shakya et al. [107]
2023 Wang et al. [111]
Storage capacity 2023 Li et al. [117]
2024 Rizqi and Chou [127]
2024 Saha and Rathore [128]
2024 Stranieri et al. [129]
Storage capacity 2022 Fallahi et al. [100]

and budget

» Invalid-action masking: remove infeasible choices before sampling
so the policy only selects from feasible actions (e.g., feasibility
masks in [112]; masking for transshipments in [124]).

» Hard bounds via the action set: define state-dependent caps so
actions cannot exceed remaining capacity (e.g., capped order sets
in [107], explicit upper limits in [124]).

Although many RL papers include capacity (see Table 9), most
do not study capacitated systems as a topic in their own right. As a
result, head-to-head comparisons with classical capacitated OR bench-
marks remain limited, and work on canonical multi-echelon capacitated
systems (e.g., assembly-type structures) is still sparse (see Table 9).
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5.4. A4: Other applications

Some papers do not neatly fall into our proposed typology. These
papers still have close ties with the inventory control literature but ap-
proach inventory problems from different angles, often without directly
optimizing parameters such as order quantity or review period. The
most prominent among these applications is that of ABC-style inventory
classification, which we discuss first, followed by a set of miscellaneous
applications. The papers that consider the topic of classification (ABC
or related), are shown in Table 10.

Inventory classification

Inventory classification papers extend the ABC analysis that is
widely used in practice. Standard ABC analysis divides SKUs into the
categories A, B, and C based on historic demand and dollar usage [150].
The appeal of this approach lies in its simplicity: rather than assigning
unique parameters to thousands of SKUs, firms can apply a single
replenishment policy to each category.

Because of its prevalence, researchers have long sought to improve
ABC classification. Early multi-criteria approaches such as AHP [151,
152] or weighted optimization models [153-155] allowed for the inclu-
sion of additional factors like lead time or criticality. However, these
approaches relied on subjective weights and did not always align with
cost performance. Teunter et al. [156] showed that common criteria
such as demand value or demand volume can perform poorly from a
cost perspective and proposed more objective cost-oriented criteria.

This critique opened the door to machine learning approaches,
which seek to replace subjective weighting by data-driven classifica-
tion. A first strand uses unsupervised learning. Zowid et al. [157] apply
Gaussian Mixture Models to cluster SKUs into ABC classes, while Zhang
et al. [158] combine clustering with a backpropagation neural network
to improve spare parts classification. Other work uses association-based
clustering: Xiao et al. [159] exploit cross-selling relationships to derive
lost-profit-based groupings. Hu et al. [160] introduce a dominance-
based rough set approach that learns if-then decision rules from his-
torical data.

A second strand adopts supervised learning. Early studies such
as Partovi and Anandarajan [161] trained neural networks on expert-
labeled ABC categories to automate classification, while Yu [162] com-
pared Al classifiers (SVMs, BPNs, k-NN) against traditional multiple dis-
criminant analysis on benchmark datasets. More recently, research has
shifted away from human-provided labels toward simulation-derived
ground truth. Lolli et al. [163] and Lolli et al. [164] propose frame-
works in which optimal (R,S) parameters are first determined via
simulation, then grouped into categories, and finally used to train
classifiers such as decision trees, random forests, SVMs, and ANNs.
This approach demonstrates that ML models can approximate cost-
minimizing classifications efficiently, especially in settings with inter-
mittent demand.

In addition to these approaches, there are some studies that use this
simulation-classification framework, but do not restrict themselves to
the ABC categories widely used in practice. [165] study a multi-echelon
setting and train a classification model that selects the best policy
(such as continuous review or periodic review) using a simulation
framework and achieve an accuracy of 88% in classifying the cost
minimizing policy. Svoboda and Minner [166] use a genetic algorithm
to train cost-minimizing decision trees and find that their approach
only increases the cost 1% over cost-optimal allocation. Badakhshan
et al. [167] extend this approach by embedding it within a digital twin
for joint inventory and cash management. These methods are related
to reinforcement learning, since policies are derived from simulated
environments, but differ in that the policy space is pre-structured
(e.g., restricted to (R, .S) policies) and the learning is supervised rather
than sequential (see Table 10).

Together, these contributions illustrate an evolving line of research:
from subjective weighting models, through cost-based critiques, to fully
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Table 10
Machine learning approaches for multi-criteria inventory classification (sorted
by year within topic).

Topic Year Authors
2011 Xiao et al. [159]
ABC 2017 Hu et al.. [160]
Unsupervised 2018 Balugani et al. [168]
inven‘;or 2019 Zowid et al. [157]
dassiﬁcayﬁon 2020 Zhang et al. [158]
2021 Rengasamy and Murugesan [169]
2021 Wang and Gao [170]
ABC 2002 Partovi and Anandarajan [161]
Supervised 2011 Yu [162]
classification 2023 Khanorkar and Kane [171]
(expert labels)
ABC 2016 Kartal et al. [172]
Supervised 2016 Lépez-Soto et al. [173]
classification 2017 Lolli et al. [174]
(simulation 2017 Lopez-Soto et al. [175]
labels) 2019 Lolli et al. [164]
2019 Sundar and Punniyamoorthy [176]
non-ABC 2019 Priore et al. [165]
Supervised 2022 Svoboda and Minner [166]
classification 2022 Badakhshan et al. [167]
(simulation
labels)
Other MCIC approaches 2014 Lolli et al. [177]

Table 11
Other applications of ML in inventory control.

Topic Authors

Ren et al. [178]
Kmiecik [179]

Ntakolia et al. [180]
Islam and Amin [181]
Ahmed et al. [182]
de Santis et al. [183]

Third Party Logistics (3PL)

Backorder prediction

Dynamic buying and selling of Namir et al. [184]

inventory depending on price

Integrated inventory and Guo et al. [185]

scheduling framework

4.5cmDigital Twin Badakhshan et al. [167]

Pareto optimal frontiers Bandaru et al. [186]

Reorder point prediction based
on historic reorder points

Inprasit and Tanachutiwat [187]

Blood discard prediction Singha and Panse [188]

Yu and Wah [189]

Learning dominance relations

data-driven ML methods for inventory classification. The continued
prevalence of ABC-classification in industry underscores the potential
practical impact of these advances. However, implementing simulation-
intensive procedures to derive optimal classes poses significant hurdles
for practitioners, including the need for domain-specific simulation
models, and substantial computational resources. This may impede
real-world adoption.

A promising direction for further research would be to develop
general-purpose or ‘“zero-shot” models capable of accurately predict-
ing ABC classes without requiring firm-specific training data. Such
models could leverage transfer learning or meta-learning approaches
and would be especially valuable given the diversity of inventory
environments and the scarcity of openly available labeled datasets.

Moreover, concepts from this research stream could enrich other
ML approaches, particularly A3 (dynamic ML-integrated optimization).
Notably, reinforcement learning (RL) has yet to be applied to multi-item
inventory classification. Most RL studies to date focus on single-item
settings with constant demand, where the agent incrementally learns
the demand process. An exciting avenue for future work would be to
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Table 12
ML Techniques in inventory control papers by year.

Type Technique <2016 2016 2017 2018 2019 2020 2021 2022 2023 2024 Total

Supervised Multilayer Perceptron 2 1 2 1 2 3 2 4 3 0 20
Random Forest 1 0 0 0 0 2 4 2 3 1 13
Decision Tree 2 0 0 1 1 1 1 3 2 2 13
Linear Regression 0 0 0 0 1 0 2 3 0 2 8
k-Nearest Neighbors 3 1 0 0 1 1 2 1 4 0 13
Long Short-Term Memory 0 0 0 0 0 1 2 2 2 1 8
Extreme Gradient Boosting 0 0 0 0 0 0 3 1 0 2 6
Kernel Regression 0 0 0 1 0 0 0 1 2 0 4
Quantile Regression 0 0 0 1 0 1 0 0 2 0 4
Support Vector Regression 0 0 0 1 0 1 1 0 1 0 4
Other 2 4 0 1 2 4 6 2 4 6 31
Total 10 6 2 6 7 14 23 19 23 14 124

Reinforcement Deep Q-Learning 1 0 0 1 0 1 2 5 4 2 16

Learning PPO 0 0 0 0 0 1 1 1 2 6 11
Non-DRL 10 0 0 0 0 0 0 0 0 0 10
SAC 0 0 0 0 0 0 0 1 0 2 3
SARSA 2 0 0 1 0 0 0 0 0 0 3
A3C 0 0 0 0 0 0 0 1 0 1 2
Other 1 0 0 0 0 0 0 3 6 4 14
Total 14 0 0 2 0 2 3 11 12 15 59

Unsupervised Clustering 1 0 0 1 0 1 2 0 0 0 5

Learning

design RL agents that observe and dynamically recategorize SKUs based
on evolving demand patterns—potentially incurring switching costs.
This could extend to settings with multiple items, intermittent demand,
or more complex inventory networks, offering both methodological
challenges and opportunities.

Other methods

Beyond classification, several other themes emerge (Table 11). One
identified theme is the prediction of product backorders. These pa-
pers build on a Kaggle dataset of historical demand and inventory
records [190]. Supervised models are trained to predict the likelihood
of backorders, with approaches ranging from random forests to gradient
boosting [180-183]. While these methods do not optimize control
policies, they can provide useful early-warning systems to anticipate
shortages.

Another line of work focuses on third-party logistics. Ren et al.
[178] propose a hybrid deep learning model that integrates LSTM
layers to capture temporal demand patterns and CNN layers to capture
spatial dependencies, improving capacity allocation for a cross-border
e-commerce logistics provider. Kmiecik [179], in turn, evaluates the use
of forecasting tools from the perspective of a 3PL company, highlighting
challenges of implementation.

Finally, we observe several stand-alone applications: dynamic in-
ventory policies that react to price changes [184], integrated schedul-
ing and inventory management frameworks [185], and dominance-
learning approaches [189]. Together, these highlight the breadth of ML
applications beyond direct inventory control.

5.5. ML techniques used

Table 12 shows the techniques used in the literature included in
the review. There is a wide variety of ML techniques and hence it was
chosen only to display the most important techniques grouped by three
overarching categories: supervised, unsupervised, and RL.

In our exploration of neural networks, we observed a common
occurrence where papers employ distinct terminology to describe iden-
tical techniques. It is apparent that numerous neural network models
can be regarded as iterations or variations of overarching concepts.
Therefore, we distinguish between three categories of neural networks:
Multi-layer perceptrons (MLPs), Recurrent Neural Networks (RNNs)
and Convolutional Neural Networks (CNNs).> We split the RNN cate-
gory into three sub-categories: Long Short-Term Memory (LSTM), Gated
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Recurrent Units (GRUs) and Other RNNs. Note that the LSTM is a
special version of the Recurrent Neural Network (RNN) [191]. The
’Other RNNSs’ category contains papers that use different configurations
of RNNs.

Within the category of reinforcement learning, a range of algorith-
mic approaches has been applied to inventory control problems, each
with different implications for scalability, convergence, and sample
efficiency. To provide a clearer overview of this landscape, Table 13
summarizes the specific RL algorithms used in the literature, grouped
by time period and algorithm type. This breakdown illustrates the
evolution from early non-deep reinforcement learning (Non-DRL) meth-
ods to more recent actor—critic and tailored approaches, reflecting the
growing algorithmic sophistication in the field.

Q-learning remains the most commonly applied RL method across
the literature. It is a value-based approach in which a neural network
approximates the action-value function. The advantage of this method
is that it allows for off-policy learning: an agent can select actions
that are not constrained by the current best policy, as determined by
the maximum Q-values. This makes Q-learning sample efficient. The
downside of these algorithms is that they do not converge well and are
unstable. According to Boute et al. [8] value-based methods are most
appropriate when sample size matters.

In addition to Q-learning, Proximal Policy Optimization (PPO) is
a popular method in the reinforcement learning literature. PPO is
an actor—critic method, which combines value-based and policy-based
approaches. In PPO, an agent learns a policy but is evaluated by the
critic, which estimates the Q-values. One advantage is that it supports
continuous action spaces, which is beneficial in inventory control prob-
lems, where ordering decisions — while discrete — often span a wide
range of values. When we look at the trend, we see that PPO is growing
in popularity compared to DQN.

Few papers compare different reinforcement learning algorithms.
Meisheri et al. [105] apply both PPO and Q-learning and find that
Q-learning outperforms once the sample size is large enough. Similar
comparative studies could guide researchers in identifying the most
promising algorithms for inventory control.

Recent work has begun to tailor reinforcement learning algorithms
to the specific challenges of inventory control, moving beyond standard

2 Extreme Learning Machine (ELM) is grouped in with MLPs. Radial Basis
Function Neural Networks are grouped in ‘other’.
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Table 13

Reinforcement Learning algorithms Used in inventory control studies by time period.
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RL category

<2014

2015-2020

2021-2022

2023-2024

Non-DRL

Q-Learning

SARSA

PPO

Giannoccaro and Pontrandolfo
[84], Rao et al. [85], Emerson
and Piramuthu [86],
Ravulapati et al. [87],
Piramuthu [88], Kim et al.
[89], Kwon et al. [78], Jiang
and Sheng [79], Kwak et al.
[90]

Kim et al. [80]

Sui et al. [91]

Katanyukul et al. [92],
Katanyukul and Chong [93]

Kara and Dogan [94], Bharti
et al. [96], Kiyaei and Kiaee
[99], Wang and Lin [98]

Kara and Dogan [94]

Vanvuchelen et al. [95], Perez
et al. [97]

De Moor et al. [104], Fallahi
et al. [100], Oroojlooyjadid
et al. [58], Shakya et al.
[107], Zhou et al. [103],
Cuartas and Aguilar [109], Li
et al. [117], Lu and Meyn
[114], Mo et al. [113], Saha
and Rathore [128], Yavuz and
Kaya [126]

Meisheri et al. [105], Zhou
et al. [116], van Hezewijk

SAC - -

A3C - -

Other -
(Ruminative)

Katanyukul and Chong [93]

et al. [112], Batsis and
Samothrakis [130], Dehaybe
et al. [119], Kaynov et al.
[121], Liu et al. [120],
Stranieri et al. [129], Tian
et al. [123]
- Gioia et al. [106], Lee et al.
[124], Yavuz and Kaya [126]
- Gijsbrechts et al. [102], Tian
et al. [123]
Mohamadi et al. [118] (A2C),
Demizu et al. [110] (BNN,
TRPO, MML), Cheung et al.
[115] (BORL, SWUCRL2-CW),
Stranieri et al. [122] (DRLBD),
Zhou et al. [103] (Double
Q-learning, TN-DDQN), Luo
et al. [125] (MARS), Rizqi
and Chou [127] (NERL),
Wang et al. [111] (RL4LS)

Preil and Krapp [101] (MAB)

approaches like vanilla Q-learning or PPO. Several studies introduce
algorithmic innovations aimed at improving performance under un-
certainty, variance, and real-world constraints. For example, Zhou
et al. [103] adapt Double Q-learning with a target network to reduce
overestimation bias in joint pricing and inventory decisions. Cheung
et al. [115] propose dynamic exploration methods like Bandit-over-
Reinforcement Learning (BORL) and Sliding Window Upper-Confidence
bound for Reinforcement Learning with Confidence Widening
(SWUCRL2-CW) to better handle time-varying non-stationary environ-
ments. Rizqi and Chou [127] develop a neuroevolutionary RL method
for sourcing decisions in multi-echelon systems, while Luo et al. [125]
introduce a model-adaptive actor—critic algorithm (MARS) with prov-
able convergence guarantees, directly addressing earlier-mentioned
convergence issues.

Beyond these bespoke methods, researchers are increasingly explor-
ing alternative actor—critic frameworks such as A3C [102,123] and
A2C [118], which offer scalability and parallelization benefits com-
pared to PPO. Others are combining multiple RL components within
hybrid frameworks—for instance, Demizu et al. [110] integrate TRPO
with Bayesian neural networks and meta-learning, while Yavuz and
Kaya [126] fuse Q-learning and Soft Actor-Critic (SAC) to manage
pricing and perishability jointly. Soft Actor—Critic (SAC), while not yet
widely adopted in inventory control, has begun to appear in recent
studies [106,124,126], likely due to its robustness in high-dimensional
settings and its entropy-regularized exploration strategy. Its off-policy
nature and support for continuous action spaces make it a theoretically
attractive candidate for scaling RL to real-world inventory systems.
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In line with this trend, recent work outside the scope of our review
has introduced Deep Controlled Learning (DCL) [192]. DCL addresses
variance in simulation-heavy environments — like inventory control —
by comparing actions across shared exogenous demand trajectories and
allocating simulation effort using multi-armed bandit principles. While
not included in our dataset due to its recency, it illustrates the broader
potential for domain-specific RL innovations in operations research.

5.6. Fraction of applied work

Fig. 7 shows the fraction of studies that use real-world data to
verify model performance. Even though the field of inventory control
benefits greatly from the development of new mathematical models and
procedures, the end goal is to improve inventory system performance in
real-world settings. The fraction of papers that actually use real-world
data can be used as a proxy for how close the field is to the practice of
inventory control.

Within category A3, we see that simulation-only studies are still
dominant. The lack of real-world studies using RL is also noted by other
authors [8,11] and is considered a significant gap in the research. RL
studies such as Kara and Dogan [94], De Moor et al. [104], and van
Hezewijk et al. [112] serve the purpose of showing in a controlled
setting that these models tend to outperform their statistical or heuristic
counterparts. While simulation-only studies are still most prevalent,
there is an upward trend in the fraction of work that utilizes real-world
data [99,105,110,111,193].

The articles reviewed contained only one actual implementation
study. Qi et al. [65] study an end-to-end (E2E) inventory control model
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Fig. 7. Line graph showing the fraction of studies using real-world data for the different ML Integration categories Al, A2, A3 and A4 over the years. Lines are

connected only when there are publications in adjacent years.

and implement the model for a Chinese e-commerce firm (JD.com).
Their model achieves substantial cost savings. Although implementa-
tion studies are difficult to conduct due to the need for substantial
cooperation from companies, they represent the most reliable method
of verifying real-world performance.

6. Conclusions (integration, applications, and outlook)

This review provided a comprehensive overview of machine learn-
ing applications in inventory control, analyzing 122 articles based on
a framework that classifies studies by the way ML is integrated into
the inventory optimization framework (RQ1) and the specific inven-
tory problem characteristics (RQ2) addressed. In this final section, we
summarize our findings and discuss the research gaps (RQ3), with the
latter also being included in Table 15. A central finding was the clear
“division of labor” among ML approaches: simpler, static methods are
applied to problems with basic characteristics, while more complex,
dynamic methods like Reinforcement Learning (RL) are tackling a new
frontier of challenging inventory problems. This cross-analysis provided
insights into where future research is most needed.

6.1. (RQ1) How is machine learning integrated into the inventory optimiza-
tion framework?

We identified three primary ways in which ML has been integrated
into inventory optimization, grouped into categories Al (separate es-
timation and optimization), A2 (static ML-integrated optimization),
and A3 (dynamic ML-integrated optimization). In addition, a fourth
category (A4) was used to capture contributions that did not fit neatly
into the main three. In recent years we see a clear shift away from
the predict-then-optimize paradigm toward ML-integrated approaches
especially reinforcement learning (A3).

A1 (separate estimation and optimization). Forecasts (points, quantiles,
scenarios) are produced by ML and then plugged into established
optimization models. The strength is interoperability: A1l can be used
with linear, stochastic, or robust formulations without changing pol-
icy structure or constraints, which helps in domains with governance
requirements and complex constraint sets. The limitation is lack of co-
optimization: when lead times, capacities, or network couplings make
current decisions shape future states, forecast errors can propagate
directly into costs.
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Table 14

Mini crosswalks by ML approach (A1-A3). Columns are inventory dimensions
(B-I); rows 1-5 denote the subcategories within each dimension. Legend:
= absent (0 studies), o= rare (1-2 studies), ®= emerging (3-5 studies),
common (>5 studies).

Al Separate estimation & optimization

B C D E F G H I
1 . ® . . . . . .
2 o . o . . ® ® -
3 - - — -
4 - -
5 o
A2 Static ML-integrated

B C D E F G H I
1 . . . . ® . . .
2 - . o © . o - o
3 ° - - -
4 - o
5 o
A3 Dynamic (RL)

B C D E F G H I
1 . ® . . . . . .
2 ) . . . . . . .
3 o ® o _
4 - O]
5 ®

Row keys (by column): Items (B): (1) single item, (2) joint replenishment, (3) substi-
tutable, (4) complementary; Periods (C): (1) single period, (2) multi-period; Supply
process (D): (1) LT =0, (2) deterministic LT>1, (3) stochastic LT, (4) product-specific
LT, (5) multi-supplier; Procurement (E): (1) no fixed cost, (2) fixed/setup, (3) discounts;
Backorders/lost sales (F): (1) backorders, (2) lost sales; Perishability (G): (1) none,
(2) perishables, (3) obsolescence; Echelons (H): (1) single echelon, (2) multi-echelon;
Capacity (I): (1) unconstrained, (2) constrained.

A2 (static ML-integrated optimization). Here the inventory cost is em-
bedded in a supervised loss and minimized on historical samples.
This directly targets operational objectives and typically outperforms
pure forecast-then-optimize in single-period settings. Most work to
date adopts newsvendor-type losses. Capacity appears in simple forms
(e.g., storage capacity limits). Other variants — which shape the su-
pervised loss to approximate downstream costs — are a promising
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Key gaps and near-term opportunities by ML-integration approach.

Approach

Key gaps and near-term opportunities

Al: Separate estimation and
optimization

« Go beyond point forecasts: use distributional forecasting (e.g., variance/quantiles)

+ Test in complexer settings: stochastic/positive lead times, capacity limits,
multi-echelon networks, perishables, joint replenishment/substitution.
+ Calibrate forecasts for decisions: adopt forecasting congruence ideas to reduce order

volatility

A2: Static ML-integrated

optimization approaches

+ Test models across multiple service levels to assess outperformance over Al

« Loss designs that approximate downstream (multi-period) costs are
promising—validate them across regimes (service levels, lead times, perishability,
capacity) and compare to RL on the performance-compute trade-off.

A3: Dynamic ML-integrated
optimization (RL)

« Scale and stability: large action spaces, convergence, and training cost remain
bottlenecks—evaluate reduction/structuring strategies head-to-head.

« Data integration: few papers fuse forecasts/auxiliary features into the state;
develop “data-driven RL”.

+ External validity: more real-world datasets, standardized environments, and
like-for-like comparisons across algorithms/policies.

« Explore multi-item settings (B2-B4), stochastic deterioration rates (G2), product
obsolescence (G3), capacitated multi-echelon systems (12, H2)

« Treat canonical systems as subjects in their own right — lost-sales (F2) and
capacitated (I2) settings — and run head-to-head comparisons against state-of-the-art
benchmarks to test whether RL can close known optimality gaps.

A4: Other methods (inventory
classification)

+ General-purpose “zero-shot” ABC classifiers via transfer-learning

« RL for multi-item, time-varying ABC assignments (with switching costs and
service-level constraints)

bridge toward multi-period effects while retaining supervised-learning
tractability.

A3 (dynamic ML-integrated optimization). RL optimizes by interact-
ing with a simulated environment, making it natural when multi-
echelon structures, lead-time uncertainty, or perishability couple de-
cisions across time and space. Recent papers adapt architectures to
inventory specifics (e.g., handling large action spaces), but scaling and
systematic, like-for-like benchmarking remain open.

A4 (Other methods). Within this class we found multiple applications
of ML in inventory management that are separate from A1-A3. The
most prominent stream was Multi-criteria/ABC inventory classification.
This application of ML is promising because of the widespread usage
of these classification schemes in practice. In addition we found other
applications such as, predicting risks (e.g., stockouts/spoilage), Third
Party Logistics (3PL) among others.

6.2. (RQ2) What types of inventory system characteristics have been con-
sidered?

We categorized the literature along eight dimensions: number of
items (B), number of periods (C), supply process/lead time (D), procure-
ment/setup (E), backorders vs. lost sales (F), perishability/obsolescence
(G), single vs. multi-echelon (H), and capacity constraints (I). For
each dimension, we coded the model assumptions used in each pa-
per. Table 14 crosswalks these inventory-system dimensions with the
ML integration approaches (A1-A3), summarizing our research and
highlighting coverage and remaining gaps.

RL (A3) was used most where actions change future states in mean-
ingful ways: multi-echelon networks (H2), perishables with age dynam-
ics (G2), positive or stochastic lead times (D2/D3), and dual/multi-
sourcing (D5). Lost-sales assumptions (F2) and capacity limits (I2)
also appear frequently. A persistent gap is complementary multi-item
systems (B4) (e.g., assemble-to-order, spare parts), where the joint
action space grows quickly and remains a practical barrier.

By contrast, Al (separate estimation—optimization) and A2 (static
ML-integrated) were used mainly with single-item, single-period,
immediate-replenishment settings (B1, C1, D1). Al’s strength is inter-
operability: ML forecasts (points/quantiles/scenarios) plug into existing
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linear, stochastic, or robust models, so constraints (e.g., storage/budget,
12) are handled without changing policy structure. A2 embeds cost
asymmetry directly in a supervised loss and performs well in data-
rich newsvendor-type problems; capacity typically enters in simple
forms (e.g., shelf-space limits). Early loss designs that approximate
downstream (multi-period) costs are beginning to push A2 beyond
single-period settings, but evidence here is still emerging.

Finally, although recent A2 work hints at handling richer dynamics
(e.g., D2-D5 lead times/sourcing, H2 multi-echelon, G2 perishables),
we found that actual applications in these settings remain sparse, and
when they do appear they are rarely benchmarked head-to-head against
well-known heuristics for the same problem class. Table 14 gives an
overview of the neglected inventory system characteristics for each
individual ML integration approach.

6.3. (RQ3) What are the key directions for further research?

Our review identified significant research gaps both in methodol-
ogy (RQ1) and at the intersection of inventory system dynamics and
methodological approaches (RQ2). Table 15 provides a comprehensive
overview of these gaps.

Although integrating ML into optimization directly theoretically
offers performance improvement over Al (separate estimation and
optimization). We see that A1 approaches may offer an advantage when
applied in practice because they easily integrate with current inventory
optimization procedures. In order to increase performance from an in-
ventory cost perspective, further work is needed to incorporate forecast
congruence — the stability of forecast traces across time — into model
selection. Additionally, exploring distributional forecasting remains an
open opportunity. A2 (static ML-integrated optimization) studies would
benefit from evaluation across diverse operating regimes to assess
whether preserving empirical distributions during optimization leads to
tangible improvements. In A3 (dynamic estimation and optimization),
there is a notable lack of applied studies using real-world data and
actual demand time series.

Algorithmically, promising developments within A3 address the
unique requirements of operations research (OR) problems. However,
the absence of comparative studies among new algorithms, and the
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scalability of RL approaches to real-world contexts, remain open chal-
lenges. The emerging use of pre-trained agents is a step forward, but
more research is warranted.

Within inventory classification (A4) we see some opportunities:
develop general-purpose (“zero-shot”) ABC models that do not need
firm-specific training, using transfer-learning to adapt across contexts.
Insights here can also inform A3: design RL agents that dynamically
reclassify multiple SKUs over time under intermittent demand and
networked inventories.

Regarding inventory system dynamics, gaps remain across all
methodologies. Multi-item systems, commonplace in production and
spare parts management, are underrepresented in the literature. Given
RL’s strengths in learning within large state spaces, its application to
multi-item inventory systems is a promising area. This hinges upon the
development of models that are able to deal with large action spaces.

The prevailing assumption of immediate replenishment (D1) limits
practical relevance. Future research should extend to stochastic lead
times (D3). Other areas needing attention include quantity discounts
(E3), stochastic deterioration (G2), product obsolescence (G3), and
complex network-like supply chain networks (H2).

Other observed trends (outside RQ1I-RQ3)

In analyzing the articles, we noted several cross-cutting observations
outside the scope of our typology:

» Reproducibility. Many papers do not share code. For ML ap-
plications, releasing code is natural and would greatly improve
replication and extension of results.

+ Inventory-pricing interface. Several RL studies couple inven-
tory and pricing decisions [103,116,120,126]. Our review focuses
on inventory control, but given the complexity of the interface
with revenue management, RL appears particularly promising
here.
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